Motoneuron Differentiation of Induced Pluripotent Stem Cells from SOD1G93A Mice

نویسندگان

  • Xiao-Li Yao
  • Cheng-Hui Ye
  • Qiang Liu
  • Jian-bo Wan
  • Jun Zhen
  • Andy Peng Xiang
  • Wei-Qiang Li
  • Yitao Wang
  • Huangxing Su
  • Xi-Lin Lu
چکیده

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder mainly affecting motor neurons. Mutations in superoxide dismutase-1 (SOD-1) account for about 20% of familial ALS patients. A robust supply of motoneurons carrying the mutated gene would help understand the causes of motoneuron death and develop new therapeutics for the disease. Here, we established induced pluripotent stem (iPS) cell lines from SOD1G93A mice and compared their potency in motoneuron generation with normal iPS cells and mouse embryonic stem cells (E14). Our results showed that iPS cells derived from SOD1G93A mice possessed the similar potency in neuronal differentiation to normal iPS cells and E14 cells and can be efficiently driven to motoneuron-like phenotype. These cells exhibited typical neuronal morphology, expressed key motoneuron markers, including ChAT and HB9, and generated repetitive trains of action potentials. Furthermore, these neurons highly expressed human SOD-1 and exhibited shorter neurites compared to controls. The present study provides evidence that ALS-iPS cells can be used as disease models in high-throughput screening and mechanistic studies due to their ability to efficiently differentiate into specific neuronal subtypes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

Fingolimod Enhances Oligodendrocyte Differentiation of Transplanted Human Induced Pluripotent Stem Cell-Derived Neural Progenitors

Multiple sclerosis (MS) is an autoimmune disease which affects myelin in the central nervous system (CNS) and leads to serious disability. Currently available treatments for MS mainly suppress the immune system. Regenerative medicine-based approaches attempt to increase myelin repair by targeting endogenous progenitors or transplanting stem cells or their derivatives. Fingolimod exerts anti-inf...

متن کامل

سلول‏های بنیادی پرتوان القایی از تولید تا کاربرد: مقاله مروری

Embryonic stem cells are pluripotent stem cells which have the ability to indefinitely self-renew and differentiate into all differentiated cells of the body. Regarding their two main properties (unlimited self-renewal and multi-lineage differentiation), these cells have various biomedical applications in basic research and cell based therapy. Because the transplantation of differentiated cells...

متن کامل

Spermatogonia stem cells: A new pluripotent source for repairment in regenerative medicine

Recently new reports have proved the pluripotency of spermatogonial stem cells (SSCs) derived from male gonad. This pluripotent stem cells resembled Embryonic stem cells recognized as Embryonic Stem like cells (ES like cells). ES like cells forms sharp edge colonies that are immunopositive to pluripotency markers and have differentiation capacity to Ectodermal, Mesodermal and Endodermal layers....

متن کامل

Large-Scale Expansion of Human Embryonic and Induced Pluripotent Stem Cells for Cell Therapy Applications

Successful isolation, derivation and culturing of human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem (hiPSCs) cells in laboratory scale has opened new horizones for cell therapy applications such as tissue engineering and regenerative medicine. However, most of the cell therapy protocols using these unique cells require large number of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013